Energy and Work

Prof. Yury Kolomensky
Feb 14, 2007

- What is energy?
- Kinds of energy
- Energy sources
- Kinetic energy
- Work
- Work-energy theorem
What’s In These Slides

- Some basic definitions and examples
 - More details will be worked out on the board, and should be available in BlackLightning notes
What is Energy

• We all know this intuitively
 □ You need “energy” to move objects
 ➤ e.g. burn gasoline to move cars
 ➤ Calories to move our body parts
 ➤ Gas or electric energy to heat up food (and we will talk about temperature as a measure of motion of the molecules)
 □ So we will use this intuition to define a physical quantity more formally
 ➤ But add some constraints to make the quantity more fundamental
What is Energy (cont.)

• **Webster definition:**

 » A fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system and usually regarded as the capacity for doing work

 □ **Great, so need to define work**

 » We will do this formally in a minute, but for now, we can define work as a scalar quantity which measures the effect of a force on motion of an object

• **Alternative definition**

 » A measure of ability to produce heat
More Physics Definitions

- We want to define a *scalar* quantity that
 - Is relation to motion (or ability to cause motion)
 - E.g. for a moving object, increases with speed
 - Is additive for a collection of objects
 - I.e. $E_{\text{tot}} = E_1 + E_2 + \ldots + E_n$
 - Can be converted from one form to another by forces
 - Here is where work comes in
 - And is conserved for all fundamental processes
 - Formally, this is called an integral of motion
Three Kinds of Energy

• **Kinetic energy**
 - Scalar quantity describing motion
 - $K = \frac{1}{2}mv^2$

• **Potential energy**
 - Scalar quantity describing potential to move (itself or other objects)
 - Gravitational potential energy

• **Mass**
 - Einstein’s famous
 - $E = mc^2$
 - For example reaction $e^+ + e^- \rightarrow 2\gamma$ yields energetic photons
Energy Transfer

- **Mechanical energy transfer**
 - Work
 - Acts on *macroscopic* objects, this is what we will care about from now until April

- **Thermal energy transfer**
 - Heat
 - Acts on *microscopic* objects
Everyday Energy Sources

- **Chemical energy**
 - Potential energy due to interaction of electrons with nuclei
 \[2H_2 + O_2 = 2H_2O + \text{heat} \]

- **Nuclear energy**
 - Potential energy of interaction between protons and neutrons

- **Electrical energy**
 - Kinetic energy of moving electrons or potential energy of electrons in electric fields

- **Solar energy**
 - Kinetic energy of moving photons

- **Wind, hydro energy**
 - Kinetic energy of moving fluids
Some Energy Sources

<table>
<thead>
<tr>
<th>1g of</th>
<th>Energy (kJ)</th>
<th>Energy (Cal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>TNT</td>
<td>2.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Chocolate chip cookie</td>
<td>21</td>
<td>5</td>
</tr>
</tbody>
</table>

Courtesy R. Muller
Energy Conservation

• Fundamental property of nature
 - Energy does not disappear and does not appear out of nowhere
 - It only gets transformed
 - Demo with the bowling ball
Work-Energy Theorem

• Free-fall example